Perennial grass biomass is related to grazing exclusion and ecological site, but not mesquite cover

Amber Dalke and Mitchel P. McClaran

School of Natural Resources and the Environment, University of Arizona

Key Findings

Perennial grass biomass was generally not influenced by mesquite cover between 0 and 43%, but biomass was reduced by grazing and varied by ecological site.

1. Introduction

Background

Shrub encroachment is well documented in western North America. In the southwest, mesquite (*Prosopis spp.*) has increased in abundance over the last 150 years. Mesquite is often believed to alter ecosystem structure by reducing grass abundance.

Research Questions

- Is perennial grass biomass related to mesquite cover, livestock grazing or grazing exclusion and/or ecological site?
- Does the mesquite-grass relationship vary between native and introduced grass species?

2. Methods

a. Study Site: Santa Rita Experimental Range

		Increasing Clay Content		
		Ecological Sites		
		SLD	SLU	LU
		Sandy Loam Deep 12-16" precipitation zone (p.z.)	Sandy Loam Upland 12-16" p.z.	Loamy Upland 12-16" p.z.
Grazing Practices	Grazing Exclusions (Ungrazed since 1917)	n = 8	n = 8	n=4
	Grazed (Low/moderate since 1970s)	n = 8	n = 8	n = 4

b. Plant Measurements

- Perennial grass: basal diameter (cm) converted to biomass (grams)
- Biomass (g) = $e^{1.441}$ x diameter (cm)^{1.253}
- Biomass represents net primary productivity, not standing biomass
 Mesquite: line intercept (% foliar cover) converted to area (m²)

c. Three Biomass Measures (g/m²)

- 1. Total: Total biomass / plot
- 2. Open: Total biomass not under mesquite / area of the plot not covered by mesquite
- 3. Under: Total biomass covered by mesquite / area of the plot covered by mesquite

3. Results

a. Mesquite Cover

- Mesquite cover ranged from 0 to 42.6%
- Mesquite cover did not vary between ungrazed and grazed areas

b. Mesquite Cover vs. Biomass

- Regressions were limited to SLU and SLD
- Native open was the only category to have a significant p-value: native biomass in the open was reduced with increasing mesquite cover (but with a low adjusted R², 0.16)

significant (p≤0.05) differences using a two-way ANOVA.

c. Grazing Practices X Ecological Sites

- Based on a two-way ANOVA, there were no interactions
- Evaluated grazing practices and ecological sites separately

d. Grazing Practices

Error bars are \pm standard error of the mean. Different letters indicate significant (p \leq 0.05) differences within groups using a two-way ANOVA.

Native biomass was greater in the open in ungrazed areas

Error bars are <u>+</u> standard error of the mean. Different letters indicate significant (p≤0.05) differences using a two-way ANOVA.

Native biomass was greater under mesquite without grazing Introduced biomass was greater under mesquite with grazing

e. Ecological Sites

Error bars \pm standard error of the mean. Different letters indicate significant (p \leq 0.05) differences within groups using a two-way ANOVA.

Species Grouping

Introduced

- Total biomass did not differ for all species (native + introduced) across ecological sites
- Open biomass followed the same pattern as total biomass
- Under biomass had no differences among ecological site

4. Discussion and Conclusions

Grass is unrelated to Mesquite at the Plot Scale

- Mesquite cover did not differ between grazing practices.
- Less mesquite in clay sites was consistent with finer soils (clays) favoring shallow rooting species over deep rooting species (mesquite).
- Unexpectedly, perennial grass biomass was generally not related to mesquite between 0 and 43% cover.

Grazing reduced Grass Biomass

- Grazing (even at low/moderate stocking rates the since 1970s)
 reduced biomass, primarily through a decline in natives. Natives
 appear less resilient to repeated defoliation, possibly due to a lack
 of evolutionary history of grazing.
- In the fertile islands beneath mesquite, grazing tolerance varied.
 Natives declined with grazing and introduced species increased with grazing.

Grass Composition varied by Ecological Site

- There was no difference in total grass biomass along a clay gradient, due to the opposite behavior of native and introduced species.
- Less native biomass with increasing clay may be related to lower native species richness.

Acknowledgements

Funding provided by USDA-CSREES Conservation Effects Assessment Project (CEAP) Program.